Схемы представления знаний
Независимо от того, насколько это вторжение в науку о познании было продуктивным для психологии, оно способствовало весьма существенному прогрессу в информатике. Ньюэлл (Newell) и Саймон (Simon) предложили схему, известную как набор порождающих правил (production rules). (Подобно мы поговорим о ней в главе 5.) Со временем порождающие правила стали основным инструментом при проектировании экспертных системы. Ньюэллу и Саймону также принадлежит приоритет в разработке методики, получившей наименование анализ протокола (protocol analysis). Эта методика заключается в том, что человеку предлагается "думать вслух" в процессе решения проблемы, а затем зафиксированный протокол анализируют и пытаются отыскать в нем концепции и процедуры, которые были использованы человеком. Этот подход можно считать предшественником используемой сегодня методики извлечения знаний. Уже первые исследования на стыке психологии и информатики показали, насколько
сложной является проблема представления знаний, но они также и продемонстрировали, что ее решения следует искать скорее на пути эмпирических исследований, чем философских дебатов.
В романтический период было предпринято множество исследований, целью которых было выяснить, каким образом и многообразие сведений об отдельных фактах, и общие принципы построения окружающего нас мира можно использовать в компьютерной программе, которая ориентирована на построение логического рассуждения, направленного на достижение определенной цели. Эти исследования включали использование конструкций следующих видов (чаще в чистом виде, но иногда и в комбинации):
- правил в форме,
"если имеет место это условие, то примени этот оператор";
- разного рода сетей,
в которых узлы соответствуют концепциям, а дуги — отношениям между ними;
- логических формул,
представляющих отдельные факты и принципы, включая управляющую информацию
о том, когда применить то или иное соответствие.
Весьма репрезентативная подборка статей, написанных в первой половине этого периода, опубликована Минским [Minsky, I968J. Любая из них представляет интерес, но далеко не все убедительны с точки зрения достижений сегодняшнего дня. Тем не менее множество схем представления знаний, которым мы отдаем предпочтение в современных разработках, основаны именно на результатах, полученных в тот романтический период. Например, в работе Квилиана (Quillian) предложены ассоциативные и семантические сети в качестве графического формализма для описания фактов и определений (подробнее об этом— в главе 6). Без результатов, полученных в это время, вряд ли разработчики современных экспертных систем располагали бы таким разнообразием функций и структур.
Наиболее интересные работы, опубликованные во второй половине этого периода, собраны Уинстоном [Winston, 1976,b]. Среди них я настоятельно рекомендую ознакомиться с фундаментальной работой Минского о формализме представления знаний, получившем наименование фреймов. Работы, выполненные в этом направлении в 70-е годы в Массачусетсском технологическом институте, собраны в двухтомнике Уинстона и Брауна [Winston and Brown, 1979]. Здесь вы найдете множество статей и о тех областях искусственного интеллекта, которые выходят за рамки этой книги, в частности о машинном восприятии естественного человеческого языка, искусственном зрении, робототехнике.
2.4.
Летучие мыши и проблема с пингвинами
Аналогично, простой граф "умалчивает" и о другом факте. Несмотря на то что подавляющее большинство птиц способно летать, этого нельзя сказать о пингвинах. Как же отразить на графе исключение из общего правила. Некоторые из возможных ответов вы найдете в главе 6.
Рис.
2.4. Простой таксономический граф, не учитывающий исключений
Первая — это способность представлять знания об окружающем мире и формулировать суждения, основываясь на таких представлениях. В экспертных системах эта способность демонстрируется на практике с учетом того, что в таких системах представляются знания о конкретной предметной области, соответственно и порождаемые ими суждения относятся только к этой области. Как и программа Винограда, экспертная система выглядит весьма ограниченной в смысле объема знаний, а вероятность получить достоверное с нашей точки зрения суждение обратна объему знаний, вовлеченных в вывод суждения.
Другим признаком "понимающей" машины является способность находить эквивалентность или аналогию между разными представлениями в одинаковых ситуациях. Здесь, конечно, счет далеко не в пользу экспертных систем, поскольку в таких системах ввод информации выполняется в совершенно определенной, жесткой форме, полностью соответствующей запасенным в системе знаниям. Любое отклонение от ожидаемой схемы может привести к практически непредсказуемым последствиям.
И последнее— понимание предполагает способность обучаться каким-либо нетривиальным способом. В частности, новая информация должна интегрироваться в уже имеющееся знание и, возможно, модифицировать его. Такие способности редко демонстрируются в современных экспертных системах, хотя в последние годы и наметился определенный прогресс в области машинного обучения (подробнее об этом читайте в главе 20).
Нужно отметить, что современные экспертные системы еще слабо соответствуют многим из этих критериев, но вывод о том, что они не обладают "пониманием" хотя бы в отдельной предметной области, также спорен. В своей области каждая из современных экспертных систем "понимает", т.е. способна решать проблемы, ненамного хуже, чем человек [Davis, 1989]. Ряд хорошо описанных систем решает свои задачи на таком же уровне, что и человек-эксперт, хотя и не демонстрирует "понимания" того вида, которым так были озабочены исследователи в описываемый романтический период. Дэвис настаивает на том, что не существует связи на уровне необходимости между частным процессом решения проблемы и самим решением. Другими словами, все, что нам требуется от экспертной системы, — это получить ответ, более или менее близкий к тому, который дает эксперт-человек, или помочь человеку дать правильный ответ. Нам отнюдь не требуется, чтобы система в процессе получения ответа повторяла ту же последовательность рассуждений, что и человек, или точно таким же способом организовала свои знания о предметной области.
Однако в главе 11 и далее мы увидим, что попытки использовать экспертную систему для преподавания наталкивают на мысль о необходимости пересмотреть эту точку зрения. Результаты последних исследований в области совершенствования экспертных систем подталкивают нас все ближе к расплывчатым целям машинного "понимания". Эти же результаты породили и новый взгляд на процесс решения проблем человеком и предоставили в наше распоряжение значительно более широкий набор концепций, пригодных для анализа активности как человека, так и машины при решении проблем.