Введение в экспертные системы

         

Рабочая среда инженерии знаний TDE


TDE [Kahn et at, 1987] представляет собой среду разработки для комплекса инструментальных средств создания экспертных систем TEST [Pepper and Kahn, 1987]. Последний ориентирован прежде всего на решение проблем классификации, к которым, в частности, относится и задача диагноза. Название системы TEST— аббревиатура от Troubleshooting Expert System Tool (комплекс инструментальных средств для построения экспертных систем поиска неисправностей), а название системы TDE — аббревиатура от TEST Development Environment (среда разработки TEST). При создании этих программ был использован подход, существенно отличающийся как от подхода при разработке программ MYCIN/EMYCIN (см. главу 10), так и от подхода, использованного при разработке программ MUD/MORE (см. главу 12).



  • Основным элементом представления знаний является структурированный объект, а не порождающее правило. (Для разработки TDE был использован язык описания фреймов Knowledge Craft.)
  • Объекты представляют понятия, тесно связанные со способом мышления специалистов по поиску и устранению неисправностей. Такие абстрактные понятия, как гипотезы и симптомы, заменены конкретными— вид отказа (failure mode) и тестовая процедура (test procedure), смысл которых будет объяснен ниже.
  • Свои знания пользователи вводят в систему, манипулируя пиктограммами (в этом смысле процедура ввода знаний напоминает использованную в системе OPAL (см. главу 10)).
  • Представление знаний имеет ярко выраженный процедуральный аспект. Например, в представлении знаний тестовые процедуры связаны с видами отказов в дополнение к вычислению степени уверенности в правдоподобности гипотезы, которая рассматривается как функция от наблюдаемых симптомов.
Вид отказа, пожалуй, самое важное понятие в TEST и TDE: оно означает любое отклонение в поведении объекта при тестировании — от полной неработоспособности до отклонений в функционировании какого-нибудь малозначительного компонента. Так, если речь идет об обслуживании автомобиля, то "двигатель не заводится" — это типичный вид отказа, но "разряжена аккумуляторная батарея" — это тоже один из видов отказа. В традиционных экспертных системах нужно было различать, чем является разряд аккумуляторной батареи, — гипотезой об источнике неисправности, которая следует из первичных данных, или симптомом, представленным в составе первичных данных. Для системы TEST это разделение не имеет такого существенного значения, как для системы MUD или MYCIN. При организации знаний в TEST использованы и другие концепции:

  • процедуры тестирования и ремонта неисправностей (отказов);
  • представление в явном виде причинно-следственных связей между отказами.
Виды отказов в системе организованы в древовидную структуру, в которой корневой узел, как правило, представляет неисправность всего устройства (составного объекта), а терминальные узлы (листья дерева)— неисправности конкретных компонентов устройства (простейших объектов). Нетерминальные узлы представляют отклонения или неисправности при выполнении отдельных функций, например "нет освещения". Между корнем дерева и терминальными узлами может находиться довольно много уровней нетерминальных узлов.

Как и в системах CENTAUR и INTERNIST, это дерево неисправностей в TEST является скелетом базы знаний. Следующий уровень структуризации составляют процедуры выполнения тестирования и устранения неисправностей и различные виды правил, представляющих процедуральные знания, связанные с видами отказов. К ним относятся знания о том, какие измерения нужно выполнить для подтверждения неисправности, как устранить ее, как отыскать компонент, неисправность которого может быть причиной данного отказа, и т.п. И, наконец, существует еще и третий уровень структуризации декларативных знаний, который представлен множеством атрибутов, связанных с узлами отказов. Эти атрибуты описывают разнообразные свойства компонентов, имеющих отношение к определенной неисправности, а также связи между компонентами.

Хотя в структуре базы знаний системы TEST и не используются такие традиционные понятия, как гипотезы и симптомы, все же можно говорить о том, что работа системы построена на базе метода эвристической классификации. Узлы отказов, расположенные ближе к корню дерева, представляют абстрактные категории данных, а те, что ближе к листьям, — абстрактные категории решений (рис. 13.3). Задача программы— построить цепочку причинно-следственных связей от узлов отказов верхних уровней, например "двигатель не заводится", до терминальных узлов вроде "разряжена аккумуляторная батарея". Отображение абстрактных категорий данных на абстрактные категории решений состоит из двух типов отношений между узлами отказов в дереве — из-за (due-to) и всегда_приводит_к (always-leads-to). Эвристики представляются на программном уровне в виде подключенных к узлам дерева правил, которые направляют процесс поиска узлов более нижних уровней.

TDE является сравнительно новой системой, которую можно считать существенным шагом вперед по сравнению с системой MORE. К сожалению, когда эта книга готовилась к печати, у нас не было возможности опробовать эту систему на практике, но кое-какие тенденции в ее конструкции просматриваются довольно четко. Например, совершенно очевидно, что графический интерфейс предоставляет пользователю гораздо большую свободу при построении базы знаний, чем символьный интерфейс системы MORE. Для новичков в системе предусмотрена опция переключения на режим вопросов и ответов. В этом режиме система задает пользователю вопросы и последовательно "ведет" его через три стадии описания знаний, которые были описаны чуть выше. Опытный пользователь может отказаться от такого режима и вводить информацию, необходимую для представления знаний, в той последовательности, которую считает наиболее целесообразной.

Рис. 13.3. Иерархическая организация узлов отказов в системе TEST

Сравнивая системы MORE и TDE, можно прийти к заключению, что даже в том случае, когда в экспертной системе используется один определенный метод решения проблем, например метод эвристической классификации, может существовать несколько методик извлечения и структурирования знаний. Многое в этом процессе еще не ясно, предстоит еще много работы по сравнению разных методик, но тот опыт, который уже получен при разработке и эксплуатации систем типа MORE и TDE, дает значительный экспериментальный материал для дальнейшего теоретического осмысления и обобщения.


Содержание раздела