Уровни анализа знаний
Приведенное выше разделение на этапы встречается также и в работе Уилинги, который разработал моделирующий подход к инженерии знаний в рамках созданной им среды KADS [Wielinga et al, 1992]. В основе этого подхода лежит идея о том, что экспертная система является не контейнером, наполненным представленными экспертом знаниями, а "операционной моделью", которая демонстрирует некоторое нужное нам поведение в столкновении с явлениями реального мира. Приобретение знаний, таким образом, включает в себя не только извлечение специфических знаний о предметной области, но и интерпретацию извлеченных данных применительно к некоторой концептуальной оболочке и формализацию их таким способом, чтобы программа могла действительно использовать их в процессе работы.
В основу оболочки
KADS положено пять базовых принципов.
(1) Использование множества моделей, позволяющее преодолеть сложность процессов инженерии знаний.
(2) Четырехуровневая структура для моделирования требуемой экспертности — набора качеств, лежащих в основе высокого уровня работы специалистов.
(3) Повторное использование родовых компонентов модели в качестве шаблонов, поддерживающих нисходящую стратегию приобретения знаний.
(4) Процесс дифференциации простых моделей в сложные.
(5) Важность преобразования моделей экспертности с сохранением структуры в процессе разработки и внедрения.
Ниже мы рассмотрим подробно два первых принципа.
Главным мотивом создания оболочки KADS было преодоление сложности знаний. На сегодняшний день у инженеров по знаниям имеется возможность использовать при построении экспертных систем множество самых разнообразных методов и технологий. Однако при этом остаются три основных вопроса:
- определение проблемы,
которую необходимо решить с помощью экспертной системы;
- определений функций,
которые возлагаются на экспертную систему применительно к этой проблеме;
- определение задач,
которые необходимо решить для выполнения возложенной функции.
- организационная
модель "социально-экономической среды", в которой должна функционировать
система, например финансовые услуги, здравоохранение и т.п.;
- прикладная модель
решаемой проблемы и выполняемой функции, например диагностика, планирование
расписания работ и т.д.;
- модель задач, демонстрирующая,
как должна выполняться специфицированная функция, для чего производится ее
разбиение на отдельные задачи, например сбор данных о доходах, формирование
гипотез о заболеваниях.
В подходе, который реализован при создании KADS, стадия "концептуализации" разбивается на две части: модель кооперации, или коммуникации, и модель экспертности. Первая отвечает за декомпозицию процесса решения проблемы, формирование набора простейших задач и распределение их между исполнителями, в качестве которых могут выступать и люди, и машины. Вторая модель представляет процесс, который обычно называется извлечением знаний, т.е. анализ разных видов знаний, которые эксперт использует в ходе решения проблемы.
Кроме указанных, в состав оболочки KADS входит еще и модель проектирования, включающая технологии вычислений и механизмы представления знаний, которые могут быть использованы для реализации спецификаций, сформулированных предыдущими моделями.
На первый взгляд кажется, что представленный выше анализ в какой-то степени смазывает отличие между стадиями концептуализации и формализации. Можно, конечно, возразить, что стадия формализации представляет собой просто более детальную проработку концепций и отношений, выявленных на ранних стадиях. Модель проектирования частично включает то, что в прежней схеме было отнесено к стадии реализации, но она не предполагает создание выполняемой программы.
В своей ранней работе Уилинга немного по-другому проводил разграничение между уровнями анализа [Wielinga and Breuker, 1986]. Он рассматривал четыре уровня анализа.
- Концептуализация
знаний. На этом уровне предполагалось формальное описание знаний в терминах
принципиальных концепций и отношений между концепциями.
- Уровень эпистемологического
анализа. Целью такого анализа было выявление структурных свойств концептуальных
знаний, в частности таксономических отношений.
- Уровень логического
анализа. Основное внимание уделялось тому, как строить логический вывод
в данной предметной области на основе имеющихся знаний.
- Уровень анализа
внедрения. Исследовались механизмы программной реализации системы.
Эти уровни знаний представлены в табл. 10.1. Стратегический уровень управляет процессом выполнения задач, использующих при решении проблем методы логического вывода, подходящие для конкретной предметной области, и знания из этой области. Анализ такой схемы дифференциации знаний будет проведен в следующей главе.
Сейчас же только отметим, что описанная схема дифференциации знаний приводит нас к довольно простой архитектуре экспертной системы. В частности, оказывается, что даже в рамках традиционной архитектуры, предполагающей наличие базы знаний и машины логического вывода, можно неявным образом включить задачи и стратегии и в структуру знаний о предметной области, и в механизм построения логических заключений. Мы еще увидим в дальнейшем, что явное выделение этих задач и стратегий является главным моментом как в процессе приобретения знаний, так и в процессе проектирования структуры экспертной системы.
Таблица
10.1. Четырехуровневая схема дифференциации знании в системе KADS
Категория
знаний |
Организация |
Виды знаний |
||
Стратегическая |
Стратегии |
Планы, метаправила |
||
Задача |
Задачи |
Цели, управляющие
термы, структуры задач |
||
Логический вывод |
Структура логического
вывода |
Источники знаний,
метаклассы, схема предметной области |
||
Предметная область |
Теория предметной
области |
Концепции, свойства,
отношения |
||
10.1.
Оболочки CommonKADS и KASTUS
В рамках проекта KASTUS онтология и методология оболочки KADS была использована и при построении больших повторно используемых баз знаний [Wielinga and Schreiber, 1994]. Наименование проекта KASTUS — сокращение от Knowledge about Complex Technical Systems for Multiple Use (знания многоразового применения о сложных технических системах). Цель проекта — создание системы знаний, которую можно было бы использовать в множестве разнообразных приложений.
Уилинга и его коллеги сформулировали ряд принципов, которые составили основу 'методологии построения баз данных совместного использования. Один из них предполагает четкое разделение знаний, относящихся к предметной области и методам управления процессом применения знаний, другой — дальнейшее углубление онтологии предметной области, т.е. модели сущностей этой области и отношений между сущностями. Углублению и развитию этих двух концепций посвящено целое направление в современной литературе по экспертным системам, в которой такой подход противопоставляется методологии, основанной на приоритете технологий программирования, таких как формализм порождающих правил.